1.有一块矩形钢板ABCD,先截去了一个直角三角形AEF,得到一个五边形EBCDF.已知AB=200CM,BC=160CM,AE=60CM,AF=40CM.要从这块钢板上再截处一块矩形 如何设计才能使矩形板料的面积最大?最大面积是多少?

问题描述:

1.有一块矩形钢板ABCD,先截去了一个直角三角形AEF,得到一个五边形EBCDF.已知AB=200CM,BC=160CM,AE=60CM,AF=40CM.要从这块钢板上再截处一块矩形 如何设计才能使矩形板料的面积最大?最大面积是多少?
2.一通风设施,下部ABCD是矩形,其中AB(最底边)=2米,BC=1米;上部△CDG是等边三角形,固定点E为AB的中点,△EMN是由电脑控制其形状变化的三角通风窗,MN是可以沿设施边框上下滑动且始终保持和AB平行的伸缩横杆.
(1)当MN和AB之间距离为0.5米时,求△EMN的面积;
(2) 设MN与AB之间的距离为x米,试将△EMN的面积S(平方米)表示成关于x的函数;
(3)请你探究△EMN的面积S有无最大值,若有,请求出;若没有,说明理由.
重点(2)(3)题,
只要第二题

由题意,当MN和AB之间的距离为0.5米时,MN应位于DC下方,且此时△EMN中MN边上的高为0.5米.所以,S△EMN= =0.5(平方米).即△EMN的面积为0.5平方米. (2)①当MN在矩形区域滑动,即0<x≤1时,△EMN的面积S=x;②当MN在...