抛物线y2=2px(p>0)与直线y=x+1相切,A(x1,y1),B(x2,y2)(x1≠x2)是抛物线上两个动点,F为抛物线的焦点,AB的垂直平分线l与x轴交于点C,且|AF|+|BF|=8. (1)求P的值; (2)求点C的坐

问题描述:

抛物线y2=2px(p>0)与直线y=x+1相切,A(x1,y1),B(x2,y2)(x1≠x2)是抛物线上两个动点,F为抛物线的焦点,AB的垂直平分线l与x轴交于点C,且|AF|+|BF|=8.
(1)求P的值;
(2)求点C的坐标;
(3)求直线l的斜率k的取值范围.

(1)由

y2=2px(p>0)
y=x+1
 得:y2-2py+2p=0(p>0)有两个相等实根  
即△=4p2-8p=4p(p-2)=0,得:p=2为所求;                   
(2)抛物线y2=4x的准线x=-1.
且|AF|+|BF|=8,由定义得x1+x2+2=8,则x1+x2=6          
设C(m,0),由C在AB的垂直平分线上,从而|AC|=|BC|
(x1−m)2+y12=(x2−m)2+y22
(x1−m)2−(x2−m)2=−y12+y22
(x1+x2-2m)(x1-x2)=-4(x1-x2)                              
因为x1≠x2,所以x1+x2-2m=-4
又因为x1+x2=6,所以m=5,则点C的坐标为(5,0);
(3)设AB的中点M(x0,y0),有x0
x1+x2
2
=3
                  
设直线l方程y=k(x-5)过点M(3,y0),得y0=-2k                
又因为点M(3,y0)在抛物线y2=4x的内部,则y02<12              
得:4k2<12,则k2<3
又因为x1≠x2,则k≠0
故k的取值范围为(−
3,
0)∪(0,
3
)