△ABC中,∠A=90°,AB=4,AC=3,平面ABC外一点P在平面ABC内的射影是AB的中点M,二面角P-AC-B的大小为45°,求二面角P-BC-A的大小.
问题描述:
△ABC中,∠A=90°,AB=4,AC=3,平面ABC外一点P在平面ABC内的射影是AB的中点M,二面角P-AC-B的大小为45°,求二面角P-BC-A的大小.
答
过点M在平面ABC内作MN⊥BC于N,连结PN,则可以证明BC⊥平面PMN,即PN⊥BC,MN⊥BC,从而∠PNM是二面角P-BC-A的平面角,在三角形ABC中,计算出MN=6/5,因二面角P-AC-B为45°,即∠PAB=45°,从而有PM=AM=2,所以tan∠PNM=PM/MN=2/[6/5]=5/3,则∠PNM=arctan(5/3).