1/1×2×3+1/2×3×4+……+1/20×21×23(简便计算)
问题描述:
1/1×2×3+1/2×3×4+……+1/20×21×23(简便计算)
答
一般地有:
1/[k*(k+1)*(k+2)]
=1/2 * [(k + 2) - k] / [k*(k+1)*(k+2)] → 把分子 1 用 [(k + 2) - k] / 2 代替
= 0.5 / [k*(k+1)] - 0.5 / [(k+1)*(k+2)] ①
1/[k(k+1)] = 1/k - 1/(k+1) ② ---------- 你这个题目用不上的
所以:1/1×2×3 + 1/2×3×4 +……+ 1/20×21×22 --------- 估计末项23搞错了
= 0.5 * {[1/(1×2) - 1/(2×3)] + [1/(2×3) - 1/(3×4)] + .+ [1/(20×21) - 1/(21×22)] } 用到①
= 0.5 * {1/(1×2) - 1/(21×22)}
= 115/462
更一般地:
1/(1×2×3) + 1/(2×3×4) +……+ 1/[(n×(n+1)×(n+2)]
= 1/2 {1/2 - 1/[(n+1)*(n+2)]