如果六位数1992□□能被105整除,那么它的最后两位数是_.

问题描述:

如果六位数1992□□能被105整除,那么它的最后两位数是______.

因为105=3×5×7,所以105能同时被3、5和7整除.
根据能被5整除的数的特征,可知这个六位数有如下七个可能:
199200,199230,199260,199290,199215,199245,199275.
最后用7去试除知,199290能被7整除.
所以,199290能被105整除,它的最后两位数是90.
故答案为:90.