以知m^2+9n^2+6m+6n+10=0,求(m^2-6mn+9n^2)除以(m-3n)-(4m^2-9n^2)除以(2m-3n)的值
问题描述:
以知m^2+9n^2+6m+6n+10=0,求(m^2-6mn+9n^2)除以(m-3n)-(4m^2-9n^2)除以(2m-3n)的值
答
28/37请说明过程已知:m^2+9n^2+6m+6n+10=(m+3)^2+(3n+1)^2=0由于(m+3)^2>=0,(3n+1)^2>=0则m=-3,n=-1/3,(m^2-6mn+9n^2)=(m-3n)^2=4(m-3n)-(4m^2-9n^2)=-2-(2m-3n)(2m+3n)=-2-35=-372m-3n=-74/(-37(/(-7)=28/37