甲乙两人玩象棋游戏,一局中,甲胜乙的概率为1/2,乙胜甲的概率为1/3,且规定胜一局得2分,平一局得1分,负一局得0分.(1)若甲乙两人总得分之差的绝对值大于等于4分,则游戏结束,求玩三局结束甲赢得游戏的概率(2)甲乙两人连玩两局,求甲总得
问题描述:
甲乙两人玩象棋游戏,一局中,甲胜乙的概率为1/2,乙胜甲的概率为1/3,且规定胜一局得2分,平一局得1分,负一局得0分.(1)若甲乙两人总得分之差的绝对值大于等于4分,则游戏结束,求玩三局结束甲赢得游戏的概率(2)甲乙两人连玩两局,求甲总得分X的分布列
答
解:(1)只能是甲前两局一胜一平,然后再赢一局
下和的概率为1-1/2-1/3=1/6
p=(1/2)*(1/6)*2*(1/2)=1/12
(2)设甲得分为X
则分布列如下
P(X=0)=1/3*1/3=1/9 (两局全负)
P(X=1)=1/3*1/6*2=1/9(先负后平或先平后负,故乘以二)
P(X=2)=1/3*1/2*2+1/6*1/6=13/36 (先胜后负或先负后胜,故乘二;两局都平)
P(X=3)=1/2*1/6*2=1/6 (先胜后平,先平后胜)
P(X=4)=1/2*1/2=1/4 (两局都胜)
希望可以帮到你,有什么不理解的欢迎追问