如图梯形ABCD的两底长为AD=6,BC=10,中线为EF,且∠B=90°,若P为AB上的一点,且PE将梯形ABCD分成面积相同的两区域,则△EFP与梯形ABCD的面积比为(  ) A.1:6 B.1:10 C.1:12 D.1:16

问题描述:

如图梯形ABCD的两底长为AD=6,BC=10,中线为EF,且∠B=90°,若P为AB上的一点,且PE将梯形ABCD分成面积相同的两区域,则△EFP与梯形ABCD的面积比为(  )
A. 1:6
B. 1:10
C. 1:12
D. 1:16

∵梯形ABCD的两底长为AD=6,BC=10,
∴EF=

1
2
(AD+BC)=
1
2
×(6+10)=8,
∴S梯形ABCD=
1
2
(AD+BC)×AB=
1
2
×(6+10)×AB=8AB.
S梯形AFED=
1
2
(AD+EF)×
1
2
AB=
1
4
(6+8)×AB=
7
2
AB,
∴S△EFP=
1
2
S梯形ABCD-S梯形AFED=4AB-
7
2
AB=
1
2
AB,
∴S△EFP:S梯形ABCD=
1
2
:8=1:16.
故选D.