已知复数z1=sin2x+ti,z2=m+(m-根号3cos2x)i (i为虚数单位,t,m,x∈R),且z1=z2.

问题描述:

已知复数z1=sin2x+ti,z2=m+(m-根号3cos2x)i (i为虚数单位,t,m,x∈R),且z1=z2.
⑴若t=0且0〈X〈π ,求 X的值
(2)设t=f(x),已知当x=a时,t=1/2,试求cos(4a+π/3)的值.(a—角)

第一个问题:
∵z1=z2,
∴m=sin2x,m-√3cos2x=t.联立两式消去m,得:sin2x-√3cos2x=t,而t=0,
∴2[(1/2)sin2x-(√3/2)cos2x]=0,∴sin2xcos(π/3)-cos2xsin(π/3)=0,
得:sin(2x-π/3)=0.
∵0<x<π,∴0<2x<2π,∴-π/3<2x-π/3<2π/3,∴2x-π/3=0,得:x=π/6.
第二个问题:
f(x)=t=m-√3cos2x=sin2x-√3cos2x.
∵f(a)=1/2,∴sin2a-√3cos2a=1/2,∴2[(1/2)sin2a-(√3/2)cos2a]=1/2,
∴sin(2a-π/3)=1/4,
而sin(2a-π/3)=-cos[π/2+(2a-π/3)]=-cos(2a+π/6),
∴cos(2a+π/6)=-1/4,
得:cos(4a+π/3)=2[cos(2a+π/6)]^2-1=2×(-1/4)^2-1=-7/8.