复变函数的问题∫(L)|z|dz

问题描述:

复变函数的问题∫(L)|z|dz
.计算积分∫(L)|z|dz,其中曲线L是:(1)连接-1到1的直线段,(2)连接-1到1,中心在原点的上半圆周.

因为|z|=√(x^2+y^2),dz=dx+idy,所以积分=∫√(x^2+y^2)(dx+idy)=∫√(x^2+y^2)dx+i∫√(x^2+y^2)dy,第一问由于y=0,dy=0,所以积分=∫√x^2dx(积分限-1到1)=-∫xdx(积分限-1到0)+∫xdx(积分限0到1)=1/2+1/2=1....