(1/10+1/100+1/1000+1/10000)/(1/100+1/1000)简便运算怎么做

问题描述:

(1/10+1/100+1/1000+1/10000)/(1/100+1/1000)简便运算怎么做

(1/10+1/100+1/1000+1/10000)÷(1/100+1/1000)
=【(1/10+1/100+1/1000+1/10000)×10000】÷【(1/100+1/1000)×10000】
=(1000+100+10+1)÷(100+10)
=1111÷110
=10.1
分子与分母同时乘以10000,分值不变

=[1/100×(10+1)+1/10000×(10+1)]/[1/1000×(10+1)]
=(1/100+1/10000)×(10+1)/[1/1000×(10+1)]
=(1/100+1/10000)/(1/1000)
=(1/100+1/10000)×1000
=10+1/10
=10.1