已知双曲线x2a2-y2b2=1(a>0,b>0)的左右焦点分别为F1,F2,点A在双曲线上,且AF2⊥x轴,若|AF1||AF2|=5/3,则双曲线的离心率等于_.
问题描述:
已知双曲线
-x2 a2
=1(a>0,b>0)的左右焦点分别为F1,F2,点A在双曲线上,且AF2⊥x轴,若y2 b2
=|AF1| |AF2|
,则双曲线的离心率等于______. 5 3
答
∵
=|AF1| |AF2|
,5 3
∴设|AF2|=3t,|AF1|=5t,
∴a=t
∵AF2⊥x
∴|AF1|2=4c2+|AF2|2
即25t2=4c2+9t2,
∴c=2t,
∴e=
=2.c a
故答案为:2.