函数y=sin[2(x-π/3)+φ]是偶函数,切0<φ<π,则φ=
问题描述:
函数y=sin[2(x-π/3)+φ]是偶函数,切0<φ<π,则φ=
答
y=sin[2(x-π/3)+φ]是偶函数
则f(-x)=f(x)
sin[2(-x-π/3)+φ]=sin[2(x-π/3)+φ]
sin[-2x-2π/3+φ]=sin[2x-π/3+φ]
sin[-2x-2π/3+φ]-sin[2x-2π/3+φ]
=2cos(-2x-2π/3+φ+2x-π/3+φ)/2*sin(
-2x-2π/3+φ-2x+π/3-φ)/2
=0
即(-2x-2π/3+φ+2x-2π/3+φ)/2=π/2+kπ
则φ-2π/3=π/2+kπ
φ=π/6+kπ
0<φ<π
则φ=π/6