设函数y=f(x)在区间[0,1]上的图像是连续不断的一条曲线,且横有0≤f(x)≤1,可以用随机模拟方法近似计算由曲线y=f(x)及直线x=0,x=1,y=0所围成部分的面积S.先产生两组(每组N个)区间[0,1]上的均匀随即数x1,x2
问题描述:
设函数y=f(x)在区间[0,1]上的图像是连续不断的一条曲线,且横有0≤f(x)≤1,可以用随机模拟方法近似计算由曲线y=f(x)及直线x=0,x=1,y=0所围成部分的面积S.先产生两组(每组N个)区间[0,1]上的均匀随即数x1,x2,...,xn和y1,y2,...,yn,由此得到N个点(xi,yi)(i=1,2,...,N),在数出其中满足yi≤f(xi)(i=1,2,...,N)的点数Ni.那么有随机模拟法可得S的近似值为
答
∵∫01f(x)dx的几何意义是函数f(x)(其中0≤f(x)≤1)
的图象与x轴、直线x=0和直线x=1所围成图形的面积,
∴根据几何概型易知∫01f(x)dx≈N1/N.
故答案为:N1/N.