在四边形ABCD中,DB平分∠ADC,∠ABC=120°,∠C=60°,∠BDC=30°,延长CD到点E,连接AE,使得∠C=2∠E.
问题描述:
在四边形ABCD中,DB平分∠ADC,∠ABC=120°,∠C=60°,∠BDC=30°,延长CD到点E,连接AE,使得∠C=2∠E.
1.求证:四边形ABCD是平行四边形;
2.若DC=12,求AD的长.
答
四边形ABCD是等腰梯形,四边形ABDE是平行四边形.这题是要证明四边形ABDE是平行四边形吧!
证明:1.∵∠ABC=120°,∠C=60°,∠BDC=30°,DB平分∠ADC
∴∠CBD=180°-∠C-∠BDC=90°,∠ABD=∠ABC-∠CBD=30°
∠E=(1/2)∠C=30°,∠EAD=∠ADC-∠E=∠ADB=30°
由∠ABD=∠BDC=30°,AB∥CD(内错角相等,两直线平行)
又∵在△EAD与△BDA中
∠ABD=∠DEA,∠ADB=∠DAE,AD=DA
∴△ABD≌△DEA(AAS),AB=DE
四边形ABDE是平行四边形(一组对边平行且相等)
2.∵∠C=∠ADC,且AB∥CD
∴四边形ABCD为等腰梯形,AD=BC
又∵∠CBD=90°,∠C=60°
∴CD=2BC
∴AD=6