设F1F2分别是椭圆x2/4+y2=1的左右焦点.(1)若P是该椭圆上的一个动点,求|PF1|-|PF2|的最大值和最小值.(2)设过定点M(0,2)直线l与椭圆交于不同两点A,B,且角AOB为锐角,求l的斜率k取值范围.

问题描述:

设F1F2分别是椭圆x2/4+y2=1的左右焦点.(1)若P是该椭圆上的一个动点,求|PF1|-|PF2|的最大值和最小值.(2)设过定点M(0,2)直线l与椭圆交于不同两点A,B,且角AOB为锐角,求l的斜率k取值范围.

(一) 易知,a=2,b=1,c=√3.由椭圆的定义可知,|PF1|+|PF2|=2a=4.设|PF1|-|PF2|=m.两式相加得:|PF1|=(4+m)/2.易知,a-c≤|PF1|≤a+c.∴2-√3≤(4+m)/2≤2+√3.===>-2√3≤m≤2√3.∴(|PF1|+|PF2|)max=2√3,(|PF1|+|PF2...