求第二型曲面积分∫∫s xdydz+ydzdx+zdxdy,其中S是椭球面x2/a2+y2/b2+z2/c2=1外侧

问题描述:

求第二型曲面积分∫∫s xdydz+ydzdx+zdxdy,其中S是椭球面x2/a2+y2/b2+z2/c2=1外侧

设P=x.Q=y,R=z
由高斯公式得到
∫∫s xdydz+ydzdx+zdxdy
=∫∫∫(P'x+Q'y+R'z)dV=3∫∫∫dV (转变成了一个在椭球内的三次积分)
=3*(V椭球)
=3*(4/3)πabc
=4πabc