用数学归纳法证明,自然数列里,前n个自然数的平方和为,Sn=n(n+1)(2n+1)1/6
问题描述:
用数学归纳法证明,自然数列里,前n个自然数的平方和为,Sn=n(n+1)(2n+1)1/6
答
证明:因为Sn=1+2²+3²+.+n²
当n=1时,S1=1代入Sn=n(n+1)(2n+1)1/6 显然成立
假设当n=k时,Sk=1+2²+3²+.+k²=k(k+1)(2k+1)/6成立
则当n=k+1时,
S(k+1)=1+2²+3²+.+k²+(k+1)²
=Sk+(k+1)²
=k(k+1)(2k+1)/6+(k+1)²
=(k+1)[k(2k+1)/6+k+1]
=(k+1)(2k²+7k+6)/6=(k+1)(k+2)(2k+3)/6
=(k+1)(k+2)[2(k+1)+1]/6
于是当n=k+1时,S(k+1)=(k+1)(k+2)[2(k+1)+1]/6也成立
所以对一切正整数n,Sn=n(n+1)(2n+1)1/6成立.