设函数f(x)在(0,1]内连续可导,且lim(x趋向于0+)(√x)f`(x)存在,证明f(x)在(0,1]内一致连续
问题描述:
设函数f(x)在(0,1]内连续可导,且lim(x趋向于0+)(√x)f`(x)存在,证明f(x)在(0,1]内一致连续
我知道要把问题归结到证明lim(x趋向于0+)f(x)存在,如何由lim(x趋向于0+)(√x)f`(x)存在导出lim(x趋向于0+)f(x)存在,高手指点
答
个人认为没必要先证limf(x)存在,将其作为一致连续性的推论更合适(用Cauchy收敛准则).f'(x)在(0,1]连续,lim(√x)f'(x)存在,可得(√x)f'(x)在(0,1]有界,设有|(√x)f'(x)|