已知向量m=(cosa,sina)和n=(根号2-sina,cosa),a∈(π,2π),且|m+n|=(8根号2)/5,求cos(a/2+π/8)的值
问题描述:
已知向量m=(cosa,sina)和n=(根号2-sina,cosa),a∈(π,2π),且|m+n|=(8根号2)/5,求cos(a/2+π/8)的值
答
m+n=(cosa-sina+√2,sina+cosa)
∴|m+n|²
=(cosa-sina+√2)²+(sina+cosa)²
=(cosa-sina)²+2√2(cosa-sina)+2+(cosa+sina)²
=2(sin²a+cos²a)+2-2√2(sina-cosa)
=2+2-2√2(sina-cosa)
=4-2√2(sina-cosa)
=2+2-4[(√2/2)sina-(√2/2)cosa]
=2+2-4[sinπ/4sina-cosπ/4cosa]
=4+4[cosπ/4cosa-sinπ/4sina]
=4+4cos(a+π/4)
4+4cos(a+π/4)=(8√2/5)²
4+4cos(a+π/4)=128/25
4cos(a+π/4)=28/25
cos(a+π/4)=7/25
cos(a+π/4)=2cos²(a/2+π/8)-1
2cos²(a/2+π/8)-1=7/25
cos²(a/2+π/8)=16/25
cos(a/2+π/8)=±4/5
a∈(π,2π)
a/2∈(π/2,π)
a/2+π/8∈(5π/8,9π/8)
∴cos(a/2+π/8)=-4/5