若2loga(M-2N)=logaM+logaN,求M/N值

问题描述:

若2loga(M-2N)=logaM+logaN,求M/N值

(M-2N)^2=MN
展开M^2-5MN+4N^2=0两边除以N^2
(M/N)^2-5(M/N)+4=0
解得M/N=1或M/N=4又因为M-2N>0
M/N=1舍掉
所以M/N=4


∵2loga(M-2N)=logaM+logaN,
且 2loga(M-2N)=loga(M-2N)^2
logaM+logaN=logaMN
∴(M-2N)^2=MN
∴M^2-5MN+4N^2=0
即(M-N)(M-4N)=0
M/N=1或M/N=4
又∵M-2N>0,
∴M/N=1舍去
综上:M/N=4