两圆c1:x^2+y^2+2x+2y -8=0,C2:x^2+y^2-2x+10y-24=0相交于两点A,B,求经过A,B两点且面积最小的圆的方程
问题描述:
两圆c1:x^2+y^2+2x+2y -8=0,C2:x^2+y^2-2x+10y-24=0相交于两点A,B,求经过A,B两点且面积最小的圆的方程
答
x^2+y^2+2x+2y -8=0·······················ax^2+y^2-2x+10y-24=0·····················ba,b两式相减得:x=2y-4······················c将c式代...