自选题:如图,已知在矩形ABCD中,AB=2,BC=3,P是线段AD边上的任意一点(不含端点A、D),连接PC,过点P作PE⊥PC交AB于E. (1)在线段AD上是否存在不同于P的点Q,使得QC⊥QE?若存在,求线段

问题描述:

自选题:
如图,已知在矩形ABCD中,AB=2,BC=3,P是线段AD边上的任意一点(不含端点A、D),连接PC,过点P作PE⊥PC交AB于E.

(1)在线段AD上是否存在不同于P的点Q,使得QC⊥QE?若存在,求线段AP与AQ之间的数量关系;若不存在,请说明理由;
(2)当点P在AD上运动时,对应的点E也随之在AB上运动,求BE的取值范围.

(1)假设存在这样的点Q;
∵PE⊥PC,
∴∠APE+∠DPC=90°,
∵∠D=90°,
∴∠DPC+∠DCP=90°,
∴∠APE=∠DCP,
又∵∠A=∠D=90°,
∴△APE∽△DCP,

AP
DC
=
AE
DP

∴AP•DP=AE•DC;
同理可得AQ•DQ=AE•DC;
∴AQ•DQ=AP•DP,即AQ•(3-AQ)=AP•(3-AP),
∴3AQ-AQ2=3AP-AP2
∴AP2-AQ2=3AP-3AQ,
∴(AP+AQ)(AP-AQ)=3(AP-AQ);
∵AP≠AQ,
∴AP+AQ=3
∵AP≠AQ,
∴AP≠
3
2
,即P不能是AD的中点,
∴当P是AD的中点时,满足条件的Q点不存在.
当P不是AD的中点时,总存在这样的点Q满足条件,此时AP+AQ=3.
(2)设AP=x,AE=y,由AP•DP=AE•DC可得x(3-x)=2y,
∴y=
1
2
x(3-x)=-
1
2
x2+
3
2
x=-
1
2
(x-
3
2
2+
9
8

∴当x=
3
2
(在0<x<3范围内)时,y最大值=
9
8

而此时BE最小为
7
8

又∵E在AB上运动,且AB=2,
∴BE的取值范围是
7
8
≤BE<2.