若A是n阶方阵,且AAT=E,|A|=-1,证明|A+I|=0.其中I为单位矩阵

问题描述:

若A是n阶方阵,且AAT=E,|A|=-1,证明|A+I|=0.其中I为单位矩阵

|A+I|=|A+AA^T|=|A|*|I+A^T|=|A|*|I+A|=-|A+I|,其中倒数第二个等号是因为转置得行列式等于本身.移项得结果.