直线Y=负三分之根号三X加一和X、Y轴交于点A、B,以AB为直角边在第一象限作等腰三角形ABC,角ABC=90°

问题描述:

直线Y=负三分之根号三X加一和X、Y轴交于点A、B,以AB为直角边在第一象限作等腰三角形ABC,角ABC=90°
点P(1,A)为坐标中的一动点,要使三角形ABC和三角形BOP面积相等,求实数A的值,

题目有问题!
如果将△BOP看成以BO=1为底的三角形,那么它的高就是P点到Y轴间的距离,由于P点的坐标是(1,A),则P到Y轴的距离是1,也就是说不论P点沿x=1的直线如何移动,△BOP的面积只能是1×1×(1/2)=0.5
因此,△ABC不可能和△BOP的面积相等.