设含有4个未知数的非齐次线性方程组AX=B的系数矩阵A的秩为2,且a1=(4 3 2 1 ),a2=(1 5 1 1),a3=(-2 6 32)是该方程组的三个解,求该方程组的通解.那a2、a3不可以是特解吗?

问题描述:

设含有4个未知数的非齐次线性方程组AX=B的系数矩阵A的秩为2,且a1=(4 3 2 1 ),a2=(1 5 1 1),a3=(-2 6 3
2)是该方程组的三个解,求该方程组的通解.
那a2、a3不可以是特解吗?

a1-a2=(3,-2,1,0)^T,a1-a3=(6,-3,-1,-1)^T 是AX=0的基础解系
a1是特解
故通解为:(4,3,2,1)^T+ c1(3,-2,1,0)^T + c2(6,-3,-1,-1)^T
补充:a1是解,这是已知条件
天呢 别这样补充,用追问
Ax=b的任一解可以作特解,a2、a3当然可以作特解
通解的表达式不是唯一的