若n元齐次线性方程组Ax=0有n个线性无关的解向量,则系数矩阵A=Ax=0有n个线性无关的解向量 是不是说R(A)=0
问题描述:
若n元齐次线性方程组Ax=0有n个线性无关的解向量,则系数矩阵A=
Ax=0有n个线性无关的解向量 是不是说R(A)=0
答
A是零矩阵.
原因:
Ax=0的n个线性无关的解向量与n维基本向量组ε1,ε2,...,εn等价
所以 ε1,ε2,...,εn 也是AX=0的解
逐一代入可知 A = O
也可以由 n-r(A) = n 得 r(A) = 0,所以 A = 0