如果4阶矩阵A 满足A^3 =A和A+E的行列式为8这两个条件,求A^2+E的行列式等于多少?

问题描述:

如果4阶矩阵A 满足A^3 =A和A+E的行列式为8这两个条件,求A^2+E的行列式等于多少?

A 满足A^3 =A和A+E=8
A=E
|A^2+E|=|2E|=2^3|E|=8

A^2+E的行列式等于8

由 A^3=A 知 A(A-E)(A+E) = 0
由 |A+E| = 8 知 A+E可逆.
所以A(A-E) = 0
即有 A^2 = A
所以 |A^2+E| = | A+E| = 8.