函数f(x)=[2sin(x+拍/3)+sinx]cosx - (根号3)sin^2x (x属于R)
问题描述:
函数f(x)=[2sin(x+拍/3)+sinx]cosx - (根号3)sin^2x (x属于R)
⑴求函数f(x)的最小正周期
⑵若存在x0属于[0,5派/12],使不等式f(x0)
答
f(x)=[2sin(x+π/3)+sinx]cosx-√3sinx^2
=[sinx+√3cosx+sinx]cosx-√3sinx^2
=sin2x+√3(cosx^2-sinx^2)
=sin2x+√3cos2x
=2sin(2x+π/3)
T=2π/2=π
0