f(x)=cos4次方—2根3sinxcosx—sin4次方 1.求周期 2.x属于[0,二分之派,f(x)min及取得最小值的集合 3.递增区间

问题描述:

f(x)=cos4次方—2根3sinxcosx—sin4次方 1.求周期 2.x属于[0,二分之派,f(x)min及取得最小值的集合 3.递增区间

f(x)=(cosx)^4-(sinx)^4-2sinxcosx
=[(sinx)^2+(cosx)^2][(cosx)^2-(sinx)^2]-2sinxcosx
=1*[(cosx)^2-(sinx)^2]-2sinxcosx
=cos2x-sin2x
=cos(2x+π/4)
所以最小正周期就是2π/2=π~