多项式因式分解,(1)y(x-y)+x(x-y) (2)y(x-y)+x(y-x)(3)a(x-y)^2-b(y-x)^2 (4)a(x-y)^3-b(y-x)^3(5)a^2b(a-b)-ab^2(a-b)

问题描述:

多项式因式分解,
(1)y(x-y)+x(x-y) (2)y(x-y)+x(y-x)
(3)a(x-y)^2-b(y-x)^2 (4)a(x-y)^3-b(y-x)^3
(5)a^2b(a-b)-ab^2(a-b)

(1)xy-y^2+x^2-xy=x^2-y^2=(x+y)(x-y)
(2)xy-y^2+xy-x^2=-(x^2+y^2_2xy)=-(x-y)^2
(3)(a-b)(x-y)^2
(4)(a+b)(x-y)^3
(5)(a-b)(a^2b-ab^2)=(a-b)ab(a-b)=ab(a-b)^2

(1)=xy-y²+x²-xy=x²-y²;
(2)=xy-y²+xy-x²=2xy-x²-y²;
(3)=a(x²-2xy+y²)-b(y²-2xy+x²)=ax²-2axy+ay²-by²+2bxy-bx²=(a-b)(x²+y²+2xy);(4)=(a+b)(x³-2x²y+3xy²-y³);
(5)=(a-b)(a²b-ab²)=a³b-2a²b²+ab³

解决方案:(1)Y(X,Y)+ X(X,Y)
原= YX-Y ^ 2 + x ^ 2-YX
= x ^ 2-Y ^ 2
=(XY )(X + Y)
(2)Y(X,Y)+ X(YX)
原始的风格= YX-Y ^ 2 + XY-X ^ 2
= - (x ^ 2-2XY + Y ^ 2)
= - (xy)^ 2
(3)(xy)^ 2-B(YX)^ 2
原来的公式=(X,Y)^ 2(AB)
(4)(X,Y)^ 3-B(YX)^ 3
原式=(X,Y)^ 3 + B(X,Y)^ 3
=( XY)^ 3(A + B)
(5)^ 2B(AB)AB ^ 2(AB)
原始的风格= AB(AB)(AB)
= AB (AB)^ 2

(1)y(x-y)+x(x-y)
=(x-y)(x+y)
(2)y(x-y)+x(y-x)
=(x-y)(y-x)
(3)a(x-y)^2-b(y-x)^2
= (x-y)^2(a-b)
(4)a(x-y)^3-b(y-x)^3
=(x-y)^3(a+b)
(5)a^2b(a-b)-ab^2(a-b)
=ab(a-b)(a-b)
=ab(a-b)^2

(1)y(x-y)+x(x-y) 原式=yx-y^2+x^2-yx=x^2-y^2=(x-y)(x+y) (2)y(x-y)+x(y-x)原式=yx-y^2+xy-x^2=-(x^2-2xy+y^2)=-(x-y)^2(3)a(x-y)^2-b(y-x)^2 原式= (x-y)^2 (a-b) (4)a(x-y)^3-b(y-x)^3原式=a(x-y)^3+b(x-y)...