抛物面z=x*2+y*2被平面x+y+z=1截得一椭圆,求原点到此椭圆的最长距离和最短距离

问题描述:

抛物面z=x*2+y*2被平面x+y+z=1截得一椭圆,求原点到此椭圆的最长距离和最短距离
请用条件极值知识

x+y+x^2+y^2=1
(x+1/2)^2+(y+1/2)^2=1/2
此图形表示以(-1/2,-1/2)为圆心,半径为根2/2的圆.它经过原点.所以最短距离为0.最长距离为2r=根2