已知a、b、c为实数,且ab/a+b=1/3,bc/a+c=4/1,ac/a+c=5/1,那么abc/ab+bc+ac的值是多少?

问题描述:

已知a、b、c为实数,且ab/a+b=1/3,bc/a+c=4/1,ac/a+c=5/1,那么abc/ab+bc+ac的值是多少?

应是已知a、b、c为实数,且ab/a+b=1/3,bc/a+c=1/4,ac/a+c=1/5,那么abc/ab+bc+ac的值是多少?因为 ab/(a+b)=1/3 ,bc/(b+c)=1/4 ,ca/(c+a)=1/5 所以:(a+b)/ab = 3 (b+c)/bc = 4 (a+c)/ac = 5 即:1/a + 1/b = 3 1/b + 1...