曲线y=xex在x=1处的切线方程为( ) A.ex-y=0 B.(1-e)x+y-1=0 C.2ex-y-e=0 D.(1+e)x-y-1=0
问题描述:
曲线y=xex在x=1处的切线方程为( )
A. ex-y=0
B. (1-e)x+y-1=0
C. 2ex-y-e=0
D. (1+e)x-y-1=0
答
由y=xex,得y′=(x+1)•ex,
∴y′|x=1=2e,
又f(1)=e,
∴曲线y=xex在x=1处的切线方程为y-e=2e(x-1),
即2ex-y-e=0.
故选:C.