设б是实数域上F上n维向量空间V的一个线性变换,且V中存在向量ξ,满足:б的(n-1)次幂不等于0,但是б的n次方等于0,求б的所有特征值,并证明б不能对角化.
问题描述:
设б是实数域上F上n维向量空间V的一个线性变换,且V中存在向量ξ,满足:б的(n-1)次幂不等于0,
但是б的n次方等于0,求б的所有特征值,并证明б不能对角化.
答
A^(n-1)a≠0,A^na=0
说明 a,Aa,...,A^(n-1)a 线性无关
A在这组基下的矩阵为
0 0 ...0 0
1 0 ...0 0
0 1 ...0 0
......
0 0 ...1 0
特征值全是0
但 r(A)=n-1,故不能对角化