/表示分号

问题描述:

/表示分号
如果1/(2*3)+1/(2*3)+1/(3*4)+……+1/(9*10)的过程,
1/(1*2)=1/1-1/2,1/(2*3)=1/2-1/3,1/(3*4)=1/3-1/4,……,1/(9*10)=1/9-1/10,那么:1/(1*2)+1/(2*3)+1/(3*4)+……+1/(9*10)=1/1-1/2+1/2-1/3+1/3-1/4+……+1/9-1/10=1-1/10=9/10
请问:(1)1/(1*3)+1/(3*5)+1/(5*7)+……+1(17*19)= _________
(2)在和式1/(1*3)+1/(3*5)+1/(5*7)+……中,第6项为_______,那么1/(1999*2001)应是第______项.

(1)1/(1*3)+1/(3*5)+1/(5*7)+……+1(17*19)=(1/2)[1-(1/3)]+(1/2)[(1/3)-(1/5)]+(1/2)[(1/5)-(1/7)]+...+(1/2)[(1/17)-(1/19) ]=(1/2)[1-(1/19)]=(1/2)(18/19)=9/19;(2)在和式1/(1*3)+1/(3*5)+1/(5*7)+……...