设函数f(x)=(sinx+cosx-|sinx-cosx|)/2(x∈R),若在区间[0,m]上方程f(x)=-根号3/2恰有四个解,则m取值范围

问题描述:

设函数f(x)=(sinx+cosx-|sinx-cosx|)/2(x∈R),若在区间[0,m]上方程f(x)=-根号3/2恰有四个解,则m取值范围

当sinx≤cosx,即-3π/4+2kπ≤x≤π/4+2kπ,k∈Z 时,f(x)=1/2(sinx+cosx+sinx-cosx)=sinx
当sinx>cosx,即π/4+2kπ<x<5π/4+2kπ,k∈Z 时,f(x)=1/2(sinx+cosx-sinx+cosx)=cosx
所以函数f(x)是以2π为周期的周期函数
因为m>0,所以只考虑x>0的情况
当sinx<cosx 时,f(x)=sinx=-√3/2,解得 x=4π/3+2kπ 或 x=5π/3+2kπ,k=0,1,2,3,…
当sinx>cosx 时,f(x)=cosx=-√3/2,解得 x=5π/6+2kπ 或 x=7π/6+2kπ,k=0,1,2,3,…
即f(x)在一个周期2π里恰好有4个解满足f(x)=-√3/2
所以5π/3≤m<5π/6+2π,即m的取值范围为5π/3≤m<17π/6
这道题画个图就可以很直观的看出结果
此外函数 f(x)是以周期为2π对称轴为x=π/4+kπ的偶函数