设集合M={x|x=k*90°+45°,k∈Z},N={x|x=k*45º+90º,k∈Z},则必有( )
问题描述:
设集合M={x|x=k*90°+45°,k∈Z},N={x|x=k*45º+90º,k∈Z},则必有( )
A.M=N
B.M真包含N
C.M真包含于N
D.M∩N=空集
答
90k就是坐标轴
所以90k+45就是象限的平分线
即y=±x
45k则是坐标轴和y=±x
在加上90度
则还是坐标轴和y=±x
所以M是N真子集
选C