有一个四位数恰好是个完全平方数,它的千位数字比百位数字多1,比十位数字少1,比个位数字少2,这个四位数是 设所求的四位数为m2,它的百位数字为a,则有 m2=1000(a+1)+100a+10(a+2)+(a+3)=1111a+1023=1

问题描述:

有一个四位数恰好是个完全平方数,它的千位数字比百位数字多1,比十位数字少1,比个位数字少2,这个四位数是 设所求的四位数为m2,它的百位数字为a,则有 m2=1000(a+1)+100a+10(a+2)+(a+3)=1111a+1023=11(101a+93) 因为11是质数,所以11∣(101a+93),而101a+93=11(9a+8)+(2a+5),所以11∣(2a+5),由题意 a+3≤9,故a≤6,从而a=3 于是所求的四位数为4356
为什么11是质数,就可以判定11是(101a+93)的约数,根据什么定律判定.

完全平方数中的质因数必定是成对出现,如:6*6=2*3*2*3、12*12=3*4*3*4、15*15=3*5*3*5中的2、3、5等都是成对出现.
所以,从一个完全平方数中分离出一个质数,对应的另一个因数中必然还有一个质因数.