已知数列{Xn}满足x1=1/2,xn+1=1/(1+xn),n∈N+,证明:|xn+1-xn|≤1/6*(2/5)^n-1 (用数学归纳法)
问题描述:
已知数列{Xn}满足x1=1/2,xn+1=1/(1+xn),n∈N+,证明:|xn+1-xn|≤1/6*(2/5)^n-1 (用数学归纳法)
答
x1=1/2,x2=1/(1+1/2)=2/3
故当n=1时, lx2-x1l=1/6