以知A除以B等于C除以D,且MN不等于零,求证MA减NC后,除以MB减ND等于A除以B,

问题描述:

以知A除以B等于C除以D,且MN不等于零,求证MA减NC后,除以MB减ND等于A除以B,

A除以B等于C除以D 得 AD=BC
MN不等于零 得 M和N都不为零
则 NAD=NBC
则 MAB-NAD=MAB-NBC
则 MAB-NBC=MAB-NAD
则 (MA-NC)B=(MB-ND)A
则 (MA-NC)/(MB-ND)=A/B
即:MA减NC后,除以MB减ND等于A除以B