已知a1,a2,a3,a4成等比数列,且a1=a2+36,a3=a4+4,求a1,a2,a3,a4.

问题描述:

已知a1,a2,a3,a4成等比数列,且a1=a2+36,a3=a4+4,求a1,a2,a3,a4

设公比是q,则a2=a1•q,a3=a1•q2,a4=a1•q3
∴a1-a2=a1-a1•q=a1(1-q)=36  ①
a3-a4=a1•q2-a1•q3=a1•q2•(1-q)=4  ②

=q2=
1
9

解得:q=±
1
3

(1)当q=
1
3
时,(1-
1
3
)a1=36  解得:a1=54,则a2=18,a3=6,a4=2
(2)当q=-
1
3
时,[1-(-
1
3
)]a1=36,解得a1=27,则a2=-9,a3=3,a4=-1
终上所述:
a1,a2,a3,a4的值为:a1=54,a2=18,a3=6,a4=2
                  或:a1=27,a2=-8,a3=3,a4=-1