已知a1,a2,a3,a4成等比数列,且a1=a2+36,a3=a4+4,求a1,a2,a3,a4.
问题描述:
已知a1,a2,a3,a4成等比数列,且a1=a2+36,a3=a4+4,求a1,a2,a3,a4.
答
设公比是q,则a2=a1•q,a3=a1•q2,a4=a1•q3
∴a1-a2=a1-a1•q=a1(1-q)=36 ①
a3-a4=a1•q2-a1•q3=a1•q2•(1-q)=4 ②
=q2=② ①
1 9
解得:q=±
1 3
(1)当q=
时,(1-1 3
)a1=36 解得:a1=54,则a2=18,a3=6,a4=21 3
(2)当q=-
时,[1-(-1 3
)]a1=36,解得a1=27,则a2=-9,a3=3,a4=-11 3
终上所述:
a1,a2,a3,a4的值为:a1=54,a2=18,a3=6,a4=2
或:a1=27,a2=-8,a3=3,a4=-1