求值:【log2(3)+log4(9)+log8(27)+log16(81)+log32(243)】—5log2(3/2)
问题描述:
求值:【log2(3)+log4(9)+log8(27)+log16(81)+log32(243)】—5log2(3/2)
答
【log2(3)+log4(9)+log8(27)+log16(81)+log32(243)】-5log2(3/2)
=【log2(3)+log2^2(3^2)+log2^3(3^3)+log2^4(3^4)+log2^5(3^5)】-log2【(3/2)^5】
=【log2(3)+log2(3)+log2(3)+log2(3)+log2(3)】-log2【(3/2)^5】
=5log2(3)-log2【(3/2)^5】
=log2【(3)^5】-log2【(3/2)^5】
=log2【(3)^5/(3/2)^5】
=log2(2^5)
=5