求极限 (1+1/n)的n+m次方,n趋向无穷大,m属于N.

问题描述:

求极限 (1+1/n)的n+m次方,n趋向无穷大,m属于N.

n趋向无穷大,(1+1/n)的n次方趋近于e
所以n趋向无穷大,(1+1/n)的n+m次方趋近于e^m

e^m

略去 lim(n→∞):
(1+1/n)^(n+m)
=[(1+1/n)^n]·[(1+1/n)^m]
=[(1+1/n)^n]·{[(1+1/n)^n]^(m/n)}
=e·[e^(m/n)]
=e