在倾角30度的光滑斜面上,通过定滑轮连接着质量均为10千克的两个物体,开始使用手托住B其离地高度为5米,A

问题描述:

在倾角30度的光滑斜面上,通过定滑轮连接着质量均为10千克的两个物体,开始使用手托住B其离地高度为5米,A
位于斜面底端撤去手后,求:一.B即将着地时,B的动能;二.物体A将离开底端的最远距离.(斜面足够长)

物体A延斜面的分力是10kg*10*1/2=50N
由于有AB之间相连,则B受到总的力是B的重力减去绳子的拉力50N
所以物体B向下的加速度是a=5m/s2
所以落地速度是v=(2h/a)开根号=2开根号
所以动能是E=10J
物体B下落5米,则相应的物体A延斜面上升5米,但B落地一瞬间,AB具有相同的动能,B落地后,A的动能转化成势能使A继续延斜面上升,则mgh=E,h=0.1m,即A延斜面继续向前运动了0.2m,则A离开斜面的底端最远距离是5.2m