设F为抛物线y2=4x的焦点,A,B,C为该抛物线上三点,若FA+FB+FC=0,则|FA|+|FB|+|FC|的值为( ) A.3 B.4 C.6 D.9
问题描述:
设F为抛物线y2=4x的焦点,A,B,C为该抛物线上三点,若
+FA
+FB
=FC
,则|0
|+|FA
|+|FB
|的值为( )FC
A. 3
B. 4
C. 6
D. 9
答
设A(x1,y1),B(x2,y2),C(x3,y3)
抛物线焦点坐标F(1,0),准线方程:x=-1
∵
+FA
+FB
=FC
,0
∴点F是△ABC重心
则x1+x2+x3=3
y1+y2+y3=0
而|FA|=x1-(-1)=x1+1
|FB|=x2-(-1)=x2+1
|FC|=x3-(-1)=x3+1
∴|FA|+|FB|+|FC|=x1+1+x2+1+x3+1=(x1+x2+x3)+3=3+3=6
故选C