设F为抛物线y2=4x的焦点,A,B,C为该抛物线上三点,若FA+FB+FC=0,则|FA|+|FB|+|FC|的值为(  ) A.3 B.4 C.6 D.9

问题描述:

设F为抛物线y2=4x的焦点,A,B,C为该抛物线上三点,若

FA
+
FB
+
FC
=
0
,则|
FA
|+|
FB
|+|
FC
|
的值为(  )
A. 3
B. 4
C. 6
D. 9

设A(x1,y1),B(x2,y2),C(x3,y3
抛物线焦点坐标F(1,0),准线方程:x=-1

FA
+
FB
+
FC
=
0

∴点F是△ABC重心
则x1+x2+x3=3
y1+y2+y3=0
而|FA|=x1-(-1)=x1+1
|FB|=x2-(-1)=x2+1
|FC|=x3-(-1)=x3+1
∴|FA|+|FB|+|FC|=x1+1+x2+1+x3+1=(x1+x2+x3)+3=3+3=6
故选C