设A是n级实对称矩阵,证明:存在一正实数c使对任一个实n维向量x都有|x'Ax|≤cx'x 其中x'为x的转置
问题描述:
设A是n级实对称矩阵,证明:存在一正实数c使对任一个实n维向量x都有|x'Ax|≤cx'x 其中x
'为x的转置
答
只要C大于矩阵A的所有特征值的模就可以了.
设A是n级实对称矩阵,证明:存在一正实数c使对任一个实n维向量x都有|x'Ax|≤cx'x 其中x
'为x的转置
只要C大于矩阵A的所有特征值的模就可以了.