如图:已知等边△ABC中,D是AC的中点,E是BC延长线上的一点,且CE=CD,DM⊥BC,垂足为M,求证:M是BE的中点.
问题描述:
如图:已知等边△ABC中,D是AC的中点,E是BC延长线上的一点,且CE=CD,DM⊥BC,垂足为M,求证:M是BE的中点.
答
证明:连接BD,
∵在等边△ABC,且D是AC的中点,
∴∠DBC=
∠ABC=1 2
×60°=30°,∠ACB=60°,1 2
∵CE=CD,
∴∠CDE=∠E,
∵∠ACB=∠CDE+∠E,
∴∠E=30°,
∴∠DBC=∠E=30°,
∴BD=ED,△BDE为等腰三角形,
又∵DM⊥BC,
∴M是BE的中点.