F是抛物线y2=2px(p>0)的焦点,过焦点F且倾斜角为θ的直线交抛物线于A,B两点,设|AF|=a,|BF|=b,则: ①若θ=60°且a>b,则a/b的值为_;②a+b=_(用p和θ表示).
问题描述:
F是抛物线y2=2px(p>0)的焦点,过焦点F且倾斜角为θ的直线交抛物线于A,B两点,设|AF|=a,|BF|=b,则:
①若θ=60°且a>b,则
的值为______;②a+b=______(用p和θ表示). a b
答
①过A、B两点向准线l作垂线AC、BD,由抛物线定义知:|AC|=|FA|=a,|BD|=|FB|=b,
过B作BE⊥AC,E为垂足,∴|AE|=|AC|-|CE|=|AC|-|BD|=a-b,
又|AB|=|FA|+|FB|=a+b,∠BAE=∠AFx=60°.
在直角△AEB中,cos∠BAE=
,所以cos60°=|AE| |AB|
a−b a+b
∴a=3b
∴
=3a b
②设直线方程为x=my+
,代入抛物线y2=2px可得y2-2pmy-p2=0p 2
设A(x1,y1),B(x2,y2),则y1+y2=2pm,∴x1+x2=2pm2+p
∴a+b=|AB|=x1+x2+p=2pm2+2p
当θ≠
时,∵π 2
=tanθ,∴m=1 m
,∴a+b=|AB|=2pm2+2p=1 tanθ
=2p(tan2θ+1)
tan2θ
2p
sin2θ
当θ=
时,|AB|=2p,结论同样成立π 2
故答案为:3;
2p
sin2θ