能不能解释一下抽象定义域的概念

问题描述:

能不能解释一下抽象定义域的概念

如果一个函数是具体的,它的定义域我们不难理解。但如果一个函数是抽象的,它的定义域就难以捉摸。   例如:y=f(x) 1≤x≤2与y=f(x+1)的定义域相同吗?值域相同吗?如果已知f(x)的定义域是x∈ [1,2],f(x+1)的定义域是什么?   因为f(x)的定义域是 x ∈ [1,2],即是说对1≤x≤2中的每一个数值f(x)都有函数值,超出这个范围内的任何一个数值f(x)都没有函数值。例如3就没有函数值,即f(3)就无意义。因此,当x+1的取值超出了[1,2]这个范围,f(x+1)也就没有了函数值,所以f(x+1)的定义域是1≤x+1≤2这个不等式的解集,也就是说f(x+1)中x+1的值域是f(x)的定义域,又由于1≤x+1≤2故f(x+1)的值域与f(x)(1≤x≤2)的值域也就自然相同了。   看是不是同一个函数,因为都是f(),所以是同一个   (是不是统一函数只要看()前面的字母是不是同一个,注意大小写也要一样才是同一函数)   题目中的“已知函数f(x)”中的x是一个抽象的概念,   x可以代替f()括号中任意表达式,   如果他的定义域是(a,b)   那么,x+m和x-m的定义域都是(a,b)   就高中课程而言,函数定义域是说函数f(x)中,x的取值范围。   二、求函数的定义域:   求函数的定义域:   y=1/x 分母不等于0;   y=sprx 根号内大于等于0;   y=logaX 对数底数大于0且不等于1,真数大于0;

(1)即*-1 ≤1-3x≤1 且 -1≤2-2x≤1 得1/2≤x≤2/3
(2) 0≤2x-1x≤1 1/2≤x≤1
1/2≤1-3x≤1 且1/2≤2-2x≤1 得 x无解 故定义域为空集
不清楚了可以再问